

MANONMANIAM SUNDARANAR UNIVERSITY -TIRUNELVELI PG PROGRAMMES

OPEN AND DISTANCE LEARNING (ODL) PROGRAMMES

(FOR THOSE WHO JOINED THE PROGRAMMES FROM THE ACADEMIC YEAR 2023-2024 ONWARDS)

M.Sc. Physics				
Semester	Course	Title of the Course	Course Code	
	Core XI	Nuclear and Particle Physics	SPHM41	
	Core XII	Electromagnetic Theory	SPHM42	
IV	Elective VI	Practical – IV	SPHP41	
	Skill Enhancement Course III	Solid Waste Management	SPHS41	
	Project	Project with Viva-Voce	SPHR41	
	Extension Activity		SPHX41	

NUCLEAR AND PARTICLE PHYSICS

UNIT	Details
Ι	NUCLEARMODELS Liquid drop model – Weizacker mass formula – Isobaric mass parabola – Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular moment a and parity of ground states– magnetic moment–Schmidt model–electric Quad rupole moment-Bohrand Mottelson collective model – rotational and vibrational bands.
II	NUCLEARFORCES Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron –Exchange Forces-Meson theory of nuclear forces–Y ukawapotential – nucleon- nucle on scattering– effective range theory– spin dependence of nuclear forces –charge independence and charge symmetry – is ospin formalism.
III	NUCLEARREACTIONS Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.
IV	NUCLEARDECAY Betadecay – Continuous Beta spectrum – Fermi theory of bet Adecay - Comparative Half - life – Fermi Kurie Plot–mass of neutrino – allowed and for bid dendecay —neutrino physics – Helicity - Parity violation - Gamma decay – multi pole radiations – Angular Correlation - internal conversion – nuclear isomerism – angular momentum and parity selection rules.
V	ELEMENTARY PARTICLES Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3) groups-Gell Mannmatrices–Gell Mann Okuba Mass formula-Quark Model. Standard model of particle physics – Higgs boson.
VI	PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism.
TEXT BOOKS	
	Гayal –Nuclear Physics –Himalaya Publishing House (2011).
	Krane–Introductory Nuclear Physics –John Wiley & Sons (2008).
3. R.Ro	y and P. Nigam–Nuclear Physics –New Age Publishers (1996).

- S. B. Patel Nuclear Physics An introduction New Age International Pvt Ltd Publishers (2011).
 - 5. S.Glasstone–Source Book of Atomic Energy–Van NostrandReinholdInc.,U.S.-3rdRevised edition (1968).

ELECTRO MAGNETIC THEORY

UNIT	Details
I	ELECTROSTATICS Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors – Boundary conditions- Dielectric sphere inauniformfield–Molecular polarizability and electrical susceptibility–Electro static energy in the presence of dielectric – Multi pole expansion.
II	MAGNETOSTATICS Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution-Magnetic moment, force and torque on acurrent distribution in an external field-Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.
ш	MAXWELL EQUATIONS Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials-Gaugeinvariance-Wavee quation and plane wave solution-Coulom band Lorentz gauges-Energy and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electro magnetic fields.
IV	WAVEPROPAGATION Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface-Waves in a conducting medium-Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole.
V	ELEMENTARY PLASMA PHYSICS The Boltzmann Equation - Simplified magneto-hydrodynamic equations - Electron plasma oscillations - The Debyeshieldingproblem- Plasmaconfinementinamagneticfield-Magneto-hydrodynamicwaves-Alfven waves and magneto sonic waves.
VI	PROFESSIONALCOMPONENTS Expert Lectures, Online Seminars-Web inarson Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism.

TEXT BOOKS

1.	D. J.Griffiths, 2002, Introduction to Electrodynamics, 3 rd Edition, Prentice-Hall	
	of India, New Delhi.	
2.	J.R.Reitz, F.J.Milford and R.W.Christy, 1986, Foundation sofElectromagnetic	
	Theory, 3 rd edition, Naros a Publishing House, New Delhi.	
3.	J.D.Jackson, 1975, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi.	
4.	J.A.Bittencourt, 1988, Fundamentals of PlasmaPhysics, PergamonPress, Oxford.	
5.	Gupta, Kumar and Singh, Electrody namics, S.Chand & Co., New Delhi	

ADVANCED PHYSICS EXPERIMENTS - II AND NUMERICAL METHODS IN C++

-			
	Section A: Advanced Physics Experiments – II (Any 6 Experiments)		
1.	Investigate the equilibrium points of the logistic map equation $X_{n+1} = aX_{n(1-}X_n)$		
	for various parameter values and initial conditions:		
	a) Determine the equilibrium points for 'a' ranging from 0.5 to 2.5 with a step size of 0.1 considering x0=0.1.		
	b) Explore the behavior of the logistic map for 'a' values between 3.5 and 4.0 with a step size of 0.05 for x0=0.2.		
	c) Analyzethedynamicsneartheperiod-		
	doubling bifurcation point ata \approx 3.828, considering x0=0.3.		
	 d) Plot x_n versus for each scenario and generate bifurcation diagramsto visualize the system's behavior. 		
2.	Determination resistivity of a semi conduct or by Four Probe Method		
3.	Examine the input-output characteristics of analog-to-digital converter ADC0804 or		
	any ADCIC. The characteristics may include parameters such as linearity, accuracy,		
	resolution, and dynamic range.		
4.	Photo Conductivity Experiment:		
	a) Top lot the current-voltage characteristics of a CdS Photo Resist or (LDR) at constant irradiance.		
	b) To measure the Photo current as a function of irradiance at constant voltage		
5.	Determination of the distance between two tracks of a CD and a DVD using a Solid state		
	laser		
6.	Verification of Theven in's and Max power the orems		
7	Study the Characteristics of a Load call		

- 7. Study the Characteristics of a Load cell
- 8. Design of a Serial Shift Register susing necessary Flip-Flop ICs
- 9. Design of Encoder and Decoder Circuits using necessary ICs
- 10. Study of a quartz crystal (1MHz) and construction of a Pierce crystal Oscillator using digital inverters
- 11. UV spectral data analysis for the given spectrum
- 12. Simulation of satellite orbit around the earth using the universal law of gravitation in Scilab

Section – B :Numerical Methods in C++

(Any SIX programs with Algorithm and Flow chart)

1.Algebraic and Transcendental equation.

- a) Solution of the given equations using Newton Raphson Method-manual calculation.
- b) C++ program to find the solution using N-R method and verification.

2. Algebraic and Transcendental equations.

- a) Solution of the given equations using Bisection Method manual calculation.
- b) C++ program to find the solution using Bisection method and verification.

3. Curve Fitting–Linear Fit

- a) Principle of least square and fitting a straight line.
- b) C++ program to fit a straight line using the given data related with any physics experiment.
- 4. Curve Fitting-Non Linear Fit
 - a) Principle of fitting a second degree polynomial using method of least square
 - b) C++program to fit a polynomial using the given data related with any physics experiment.

5. Interpolation

- a) Derive Lagrangian interpolation formula.
- b) C++ program to inter polate using the given data related with any physics experiment by Lagrangian Method.
- 6. Solution of simultaneous equations –Gauss Elimination method.
 - a) Procedure to solve Simultaneous equations using Gauss Elimination(GE) Method
 - b) C++ program for solving unknown branch current sin Wheat stone's bridge using GE meth
- 7. Numerical solution of ordinary Differential Equations.
 - a) Derivation of Exponential law of Radio active decay.
 - b) RK4th order method of solving a given1st order differential equation.
 - c) C++program using RK method to solve radio active problem –Compare out put with the analytical result.

- 8. Area under the Curve-Numerical integration
 - a) Derivation of Trapezoidal and Simpson's rule
 - b) C++programs for Trapezoidal and Simpson1/3 rule
 - c) Comparison of the program out put with direct integration.

9. Random Number Generation and Montecarlo Method

- a) Generate and scale the random numbers using the C++library functions.
- b) Evaluate the given integral using Montecarlo method.
- 10. Matrix Multiplication
 - a) Multiplication of given matrices
 - b) Rotation matrix definition.
 - c) C++programtorotatethegiven2Dobjectabouttheoriginusingrotationmatrixthroughthe given angle.
- 11. Inverse of a Matrix
 - a) Procedure to determine the Inverse of a Matrix using Gauss elimination Method.
 - b) C++Program to find the Inverse of the Matrix using Gauss Elimination Method.
- 12. Numerical Differentiation
 - a) Numerical differentiation-related to any physical problem
 - b) Derivation of Newton's law of cooling -equation
 - c) C++program to verify the Newton's law of cooling from the given experimental data.

Solid Waste Management (SWM)

UNIT	Details
Ι	SOLID WASTE MANAGEMENT Introduction - Definition of solid waste - Types – Hazardous Waste:
	Resource conservation and Renewal act – Hazardous Waste: Municipal Solid waste and non-municipal solid waste
	SOLID WASTE CHARACTERISTICS
II	Solid Waste Characteristics: Physical and chemical characteristics - SWM
	hierarchy - factors affecting SW generation
Ш	TOOLS AND EQUIPMENT Tools and equipment - Transportation - Disposal techniques - Composting
111	and land filling technique
	ECONOMIC DEVELOPMENT
IV	SWM for economic development and environmental protection
	Linking SWM and climate change and marine litter.
* *	INDUSTRIAL VISIT
V	SWM Industrial visit – data collection and analysis – presentation
	PROFESSIONAL COMPONENTS
VI	Expert Lectures, Online Seminars - Webinars on Industrial
V I	Interactions/Visits, Competitive Examinations, Employable and
	Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS

1. Handbook of Solid Waste Management /Second Edition, George Tchobanoglous,
McGraw Hill (2002).
2. Prospects and Perspectives of Solid Waste Management, Prof. B BHosett, New
Age International (P) Ltd (2006).
3. Solid and Hazardous Waste Management, Second Edition, M.N Rao, BSP /BS
Publications Books (.(2020
4. Integrated Solid Waste Management Engineering Principles and Management,
Tchobanoglous, McGraw Hill (2014).
5. Solid Waste Management (SWM), Vasudevan Rajaram, PHI learning private
limited, 2016